Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Emerg Microbes Infect ; 12(1): 2178238, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2236789

ABSTRACT

5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, negatively regulates type I interferon responses during various viral infections, including SARS-CoV-2. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-ß production. Knockout or knockdown of NSUN2 enhanced type I interferon and downstream ISGs during various viral infection in vitro. And in vivo, the antiviral innate response is more dramatically enhanced in Nsun2+/- mice than in Nsun2+/+ mice. The highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation enhanced cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), or Zika virus (ZIKV) resulted in a reduction of endogenous NSUN2 levels. Especially, SARS-CoV-2 infection (WT strain and BA.1 omicron variant) also decreased endogenous levels of NSUN2 in COVID-19 patients and K18-hACE2 KI mice, further increasing type I interferon and downstream ISGs. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease during SARS-CoV-2 and various viral infections to boost antiviral responses for effective elimination of viruses.


Subject(s)
COVID-19 , Interferon Type I , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Mice , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Methylation , Zika Virus/metabolism , Mice, Knockout , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism
2.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1117323

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Subject(s)
COVID-19 , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral , SARS-CoV-2 , Animals , COVID-19/genetics , COVID-19/metabolism , Caco-2 Cells , Chlorocebus aethiops , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
3.
Emerg Microbes Infect ; 9(1): 761-770, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-29222

ABSTRACT

Circulating in China and 158 other countries and areas, the ongoing COVID-19 outbreak has caused devastating mortality and posed a great threat to public health. However, efforts to identify effectively supportive therapeutic drugs and treatments has been hampered by our limited understanding of host immune response for this fatal disease. To characterize the transcriptional signatures of host inflammatory response to SARS-CoV-2 (HCoV-19) infection, we carried out transcriptome sequencing of the RNAs isolated from the bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) specimens of COVID-19 patients. Our results reveal distinct host inflammatory cytokine profiles to SARS-CoV-2 infection in patients, and highlight the association between COVID-19 pathogenesis and excessive cytokine release such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and CCL4/MIP1B. Furthermore, SARS-CoV-2 induced activation of apoptosis and P53 signalling pathway in lymphocytes may be the cause of patients' lymphopenia. The transcriptome dataset of COVID-19 patients would be a valuable resource for clinical guidance on anti-inflammatory medication and understanding the molecular mechansims of host response.


Subject(s)
Bronchoalveolar Lavage Fluid , Chemokines/analysis , Coronavirus Infections/genetics , Cytokines/analysis , Leukocytes, Mononuclear , Pneumonia, Viral/genetics , Transcriptome , Apoptosis , Betacoronavirus , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Humans , Lymphopenia , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , RNA-Seq , SARS-CoV-2 , Signal Transduction , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL